Mardi 06 juillet
10:30

Mardi 06 juillet

Ajout à votre liste de favoris
Suppression de votre liste de favoris
A1
10:30 - 12:00

Ouverture
Accueil - Mot de présentation - Conférence inaugurale

10:35 - 10:40 Introduction par la Présidente de la SFµ. Catherine VENIEN-BRYAN (Professor) (Paris)
10:30 - 10:35 Mot d'accueil d'un représentant de l'Université de Reims.
10:40 - 10:55 Introduction par le Président du Comité Local d'Organisation. Jean MICHEL (Reims)
10:55 - 11:40 Voyage au cœur d’une flûte de champagne. Gérard LIGER-BELAIR (Equipe Effervescence, Champagne et Application, GSMA)
Depuis quelques années maintenant, le champagne et les vins à bulles au sens large connaissent un essor sans précédent. La valse des bulles dans une flûte n’est pas étrangère à cet incroyable engouement. L’effervescence qui agite votre verre engendre une kyrielle de phénomènes d’une complexité insoupçonnée, qui met en éveil tous vos sens. Nous proposerons une vue d’ensemble des phénomènes qui accompagnent une dégustation de champagne, depuis le débouchage de la bouteille, jusqu’à l’éclatement d’une bulle, en passant par le rôle essentiel du verre en dégustation. Profondément inscrite dans l’imaginaire collectif, la bulle de champagne devient prétexte à une flânerie scientifique qui nous entraîne dans le monde fascinant des gaz dissous, des changements de phase et des fluides en mouvement.

Gérard Liger-Belair est professeur à l'université de Reims Champagne-Ardenne, où il dirige un laboratoire de recherche dévolu à l’étude des bulles et des gaz dissous. Il est l'auteur d'une centaine d'articles de recherche et d'une dizaine d'ouvrages universitaires et à destination du grand public.
11:40 - 12:00 Discussion.
Room 1
12:10 Pause
13:10

Mardi 06 juillet

Ajout à votre liste de favoris
Suppression de votre liste de favoris
SC1
13:10 - 15:45

Symposium Commun 1
Avancées instrumentales et développements méthodologiques

Modérateurs : Florent HOUDELLIER (IR) (CEMES, Toulouse), Wai-Li LING (IBS, Grenoble)
Les développements instrumentaux et méthodologiques récents en microscopie touchent aussi bien les applications dans la science de la vie que dans la science des matériaux. La volonté d’étudier des échantillons sensibles, tout en augmentant les limites de résolution et de détection des instruments actuels, poussent les développements vers de nouveaux détecteurs plus sensibles, des méthodes d’acquisitions et de traitements plus rapides mais aussi de nouvelles méthodes de préparation et d’analyse des matériaux en utilisant des sources innovantes. Les sujets de ce symposium incluent, mais sans s'y limiter, de nouveaux algorithmes et méthodes pour augmenter l’efficacité et repousser les limites des microscopes tel que la détection pixélisée en STEM, des balayages non conventionnels, des nouveaux modes optiques comme l’utilisation de déflecteurs ultra-rapides dans le cas des approches pompe-sonde, l’automatisation du microscope, etc.
13:10 - 13:40 FIB from cold atoms. Matthieu VITEAU (Orsay Physics)
Charged particle beams of controlled energy and strong focusing are widely used tools in industry and science. Focused Ion Beam (FIB) column combine with a Scanning Electron Microscope (SEM) provide full control of nanofabrication or nanolithography processes. Ion energy can be varied typically in the 0.5–30KeV range, with an energy-dependent resolution attaining the nanometer range. State-of-the-art FIBs commercially available are based mainly on plasma, liquid metal tip or helium ion sources for large, intermediate, and low currents, respectively. Despite the very high technological level of the available machines, research of new ion sources allowing even higher resolution and a wider choice of atomic or molecular ions for new and demanding application is very active.
As an example, the world of electronic components evolves regularly towards the miniaturization by integrating a number of transistors more and more important. The dimensions being smaller and smaller (technology 7 nm, 5 nm even 3-2 nm), nowadays the instruments of analysis used, like the conventional FIB, reach their limit. Thus it’s necessary to realize a technological breakthrough to be able to observe, analyze and modify components and structures on the scale of the nanometer. The performances of a focused particules beam (FIB or SEM) are mainly given by the source.
After more than 10 years of research and developpement, the idea to cool down atoms and ionize them for the production of a charged beam with a high brightness is quite mature.
In this presentation I’ll introduce the principel of these cold sources and discuss the status of differents cold atoms sources for ions, and focus on our prototype [1].


References:
[1] L. Antoni-Micollier, et al., Optics letters, Vol. 43, No. 16 (2018), p.3937
13:40 - 13:50 Discussion.
13:50 - 14:20 Two-photon optogenetics, shaping light for the precise study of neuronal circuits and deep brain structures. Nicolò ACCANTO (Institut de la Vision, Paris)
In recent years the use of light has established itself as one of the most prominent tools for the study of the brain: genetically encoded calcium indicators enable to image neurons firing [1], while optogenetics has provided the key to activate neurons with light [2]. To date, optogenetics has been mainly used to activate entire brain regions, thus unveiling the links between neural activity and behaviour in different areas of the brain [3]. However, to really decrypt the neural code, we now need to understand how the spatial and temporal organization of neural activity at the single cell level influences brain computation.
Such a shift of paradigm, from the study of entire brain areas to that of single neurons and single neuronal circuits, can only occur with a parallel advancement of the optical technologies used to study the brain. Today, we need advanced optical methods capable of (1) precisely targeting hundreds of neurons at will with high spatio-temporal precision; (2) reaching very
deep brain regions while maintaining high performances.
To reach these objectives, in our group we combine two-photon (2P) light shaping with optogenetic photo-stimulation and the use of optical micro-endoscopes that can relay these techniques to deep brain regions. Recently, we demonstrated multiplexed temporally focused light shaping (MTF-LS), a technique capable of simultaneously generating hundreds of 2P excitation patterns in large volumes, suitable for the precise optogenetic photo stimulation of many neurons in the three dimensions [4]. Next, we extended MTF-LS to a micro-endoscope based on the use of a gradient index (GRIN) lens, which constitutes an important step for the precise optical study and manipulation of deep brain circuits [5].
In this talk I will detail our latest works and give a perspective on future studies.

References
1. Knöpfel (2012), Nat. Rev. Neurosci., 13, 1, DOI: 10.1038/nrn3293 2. Deisseroth (2011), Nat. Methods, 8, 26, DOI: 10.1038/nmeth.f.324 3. Jennings et al. (2013), Nature, 496, 224, DOI: 10.1038/nature12041 4. Accanto et al. (2018), Optica, 5, 1478, DOI: 10.1364/OPTICA.5.001478 5. Accanto et al. (2019), Sci. Rep., 9, 7603, DOI: 10.1038/s41598-019-43933-w
14:20 - 14:30 Discussion.
14:30 - 14:45 #26203 - Imagerie vectorielle tridimensionnelle des polaritons de phonons de surface.
Imagerie vectorielle tridimensionnelle des polaritons de phonons de surface.

Xiaoyan Li *, Georg HaberfehlnerUlrich HohenesterOdile StéphanGerald KothleitnerMathieu Kociak,

  • Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay. France.
  • Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, 8010 Graz, Austria.
  • Institute of Physics, University of Graz, Universitätsplatz 5, 8010 Graz, Austria.
  • Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay. France.
  • Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, 8010 Graz, Austria.
  • Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay. France.


Surface phonon polaritons (SPhPs) are mixed electromagnetic and optical phonons waves that propagate at the surface of ionic materials [1]. They strongly influence the optical and thermal behavior of nanomaterials. For example, they are responsible for highly coherent emission of SiC upon heating, in stark contrast with the conventional incoherent black-body radiation [2). They also induce enhanced thermal conduction in thin membranes [3] or heat transfer between two nanosurfaces [4]. These applications rely on the nanostructuration of the electromagnetic field in the vicinity of surfaces of metamaterials or nanoparticles. Designing or even engineering the electro-magnetic local density of states (EMLDOS) for specific functionalities require therefore the unambiguous visualization of such field modulations at the nanometer scale. Recently, EELS in a scanning transmission electron microscope (STEM) made it possible to measure phonons spectra at the nanometer [5, 6], then atomic scales [7]. Nevertheless, they were restricted to 2D imaging, and not able to reveal the complete three-dimensional vectorial picture of their electromagnetic density of states. Using a highly monochromated electron beam in a scanning transmission electron microscope, we could visualize varying SPhPs signatures from nanoscale MgO cubes as a function of the beam position, energy-loss and tilt angle, see Fig 1. Following early works on plasmons [8,9], the SPhPs response was described in terms of eigenmodes and used to tomographically reconstruct the phononic surface electromagnetic fields of the object [10]. Such 3D information promises novel insights in nanoscale physical phenomena and is invaluable to the design and optimization of nanostructures for fascinating new uses. Références/References : [1] Kliewer, R. Fuchs, Theory of dynamical properties of dielectric surfaces, vol. 27 (1974). [2] J. Greffet, et al., Nature 416, 61 (2002). [3] Y. Wu, et al., Science Advances 6 (2020). [4] B. Song, et al., Nature Nanotechnology 10, 253 (2015). [5] O. L. Krivanek, et al., Nature 514, 209 (2014). [6] M. J. Lagos, et al., Nature 543, 529 (2017). [7] F. S. Hage, et al., Science 367, 1124 (2020). [8] Nicoletti et al., Nature 502, 7469 (2013). [9] Hörl et al., Nature Comm. 8, 1 (2017). [10] X. Li et al., Science 371, 6536 (2021).
Yi XIAOYAN (Orsay)
14:45 - 14:55 Discussion.
14:55 - 15:10 #26204 - La microscopie électronique à transmission ultra-rapide pour l'étude des nanomatériaux.
La microscopie électronique à transmission ultra-rapide pour l'étude des nanomatériaux.

Matthieu PICHER *, Yaowei HuShyam Kanta SinhaJun SunAmir KhammariMarlène PalluelNathalie DaroGuillaume ChastanetNgoc Minh TranEric FreyszFlorian Banhart,

  • Institut de Physique et Chimie des Matériaux, CNRS UMR 7504, 67034 Strasbourg, France
  • CNRS, Univ. Bordeaux, ICMCB, UPR 9048, F-33600, Pessac, France
  • Laboratoire Ondes et Matière d’aquitaine (LOMA), 33405 Talence, France


Dynamic processes at the nanoscale are not accessible by conventional TEM because they happen at much shorter timescales than the millisecond. This restriction is nowadays being overcome by developing ultrafast TEMs working with short electron pulses. In this approach, the transformation of interest is triggered by a short photonic pulse. Then, a short electron pulse probes the sample after an adjustable delay, which allows collecting pieces of information about the reaction process along its advancing at precise time steps, that is, with high temporal resolution [1,2]. Behind such a particular setup which brings into play ultrafast lasers with a transmission electron microscope stands a remarkable instrumental opportunity to study light/matter interactions within the typical high spatial resolution of electron microscopy. Here, we present two examples of investigations that have been carried out with the UTEM in Strasbourg. 1. A non-time-resolved TEM study of the laser-induced amorphization of metal nanocrystals: an infrared nanosecond laser pulse leads to fast melting of the metal nanocrystal which then dissolves carbon atoms from surrounding graphitic species, and is followed by fast cooling. This rapid quenching does not allow structural ordering and leaves a metastable amorphous metal-carbon phase. This shows how short IR pulses irradiating encapsulated metal nanocrystals can be a route towards the fabrication and stabilization of otherwise unfavorable amorphous metal or metal-carbon phases. ([3], Fig1) 2. A temporally resolved study of Spin Crossover (SCO) switching phenomena, carried out with nanosecond pulses in a stroboscopic approach. Here, individual SCO nanoparticles encapsulating gold nanorods were subjected to IR pulses, which lead to plasmonic heating of the Au rods and consequently to the thermal spin transition of the SCO associated with a significant length change. This correlated elongation was monitored with nanosecond and nanometer resolutions, and compared with time-resolved optical measurements previously acquired on a large ensemble of SCO. (Fig2) Remerciements Funding by the Agence Nationale de Recherche (ANR-11-EQPX-0041,ANR-17-CE09-0010), by the University of Strasbourg Institute of Advanced Studies (USIAS), and the METSA Institute are gratefully acknowledged. Références [1] M.Picher, K.Bücker, T.LaGrange, F.Banhart, Ultramicroscopy,188,(2018),p41 [2] SK.Sinha, A.Khammari, et al., Nature Communications,10,(2019),p3648 [3] J.Sun, SK.Sinha, et al., Carbon,161,(2020),p495-501
Matthieu PICHER (Strasbourg)
15:10 - 15:20 Discussion.
15:20 - 15:35 #26209 - Sonder les interactions entre les bulles d'air et les (bio)-interfaces à l'échelle moléculaire en utilisant la technologie FluidFM.
Sonder les interactions entre les bulles d'air et les (bio)-interfaces à l'échelle moléculaire en utilisant la technologie FluidFM.

Understanding the molecular mechanisms underlying bubble-(bio)surfaces interactions is currently a challenge that if overcame, would allow to understand and control the various processes in which they are involved. Atomic force microscopy is a valuable tool to measure such interactions, but it is limited by the large size and instability of bubbles that can be attached on surfaces or on AFM cantilevers. To overcome these challenges, we here develop a new method to probe more accurately the interactions between bubbles and (bio)-interfaces by taking advantage of the fluidic force microscopy technology (FluidFM) that combines AFM with microfluidics. In this system, a micro-sized channel is integrated into an AFM cantilever and connected to a pressure controller system, thus creating a continuous and closed fluidic conduit that can be filled with a solution, while the tool can be immersed in a liquid environment [1]. An aperture at the end of the cantilever allows liquids to be dispensed locally. In this study, we use FluidFM in an original manner, to produce microsized bubbles of 8 µm in diameter, directly at the aperture of the microchanneled FluidFM cantilevers. For that, as shown in Figure 1 instead of liquid, the cantilever is filled with air and immersed in a liquid environment. By applying a positive pressure inside the cantilever, we succeeded in forming bubbles of controlled size directly at its aperture. Because the same pressure is maintained in the cantilever during the experiment, the dissolution of the gases from the bubble is compensated, which allows keeping the size of the bubble constant over time. After the characterization of the bubbles produced using this method, their interactions with hydrophobic surfaces were probed, showing that bubbles behave like hydrophobic surfaces. Thus they can be used to measure the hydrophobic properties of microorganisms’ surfaces, but in this case the interactions are also influenced by electrostatic forces. Finally we developed a strategy to functionalize their surface, thereby modulating their interactions with microorganisms’ surfaces. This new method provides a valuable tool to understand bubble-(bio)surfaces interactions but also to engineer them. 


Irem DEMIR (Toulouse)
15:35 - 15:45 Discussion.
13:10 - 15:45 Introduction.
Room 1
15:40 Pause
16:00

Mardi 06 juillet

Ajout à votre liste de favoris
Suppression de votre liste de favoris
AG
16:00 - 16:40

Assemblée Générale - General Assembly

16:00 - 16:40 Présentation - Rapport Moral. Catherine VENIEN-BRYAN (Professor) (Paris)
16:00 - 16:40 Rapport Financier. Ilse HURBAIN (Ingénieur de Recherche) (Bures-sur-Yvette)
16:00 - 16:40 Rapport Financier. Katia MARCH (Orsay)
16:00 - 16:40 Bourses et soutiens. Catherine VENIEN-BRYAN (Professor) (Paris)
16:00 - 16:40 Changements de statuts. Catherine VENIEN-BRYAN (Professor) (Paris)
16:00 - 16:40 Prix de l'année. Catherine VENIEN-BRYAN (Professor) (Paris)
16:00 - 16:40 La vie des revues (BOC, EPJAP). Suzanne GIORGIO (Pr) (Marseille)
16:00 - 16:40 Notre implication avec les sociétés savantes. Catherine VENIEN-BRYAN (Professor) (Paris)
16:00 - 16:40 Appel à candidature pour le Colloque de 2023. Catherine VENIEN-BRYAN (Professor) (Paris)
16:00 - 16:40 Nomination du membre d'honneur. Catherine VENIEN-BRYAN (Professor) (Paris)
16:00 - 16:40 Questions diverses issues des adhérents. Catherine VENIEN-BRYAN (Professor) (Paris)
Room 1
16:50

Mardi 06 juillet

Ajout à votre liste de favoris
Suppression de votre liste de favoris
A2
16:50 - 18:15

Remise des Prix
Prix Favard et Prix Castaing

Membre du bureaus : Suzanne GIORGIO (Pr) (Marseille), Catherine VENIEN-BRYAN (Professor) (Paris), Jean-Marc VERBAVATZ (IJM CNRS UMR 7592, Paris)
16:50 - 17:15 Prix Favard - Sciences de la Matière. Clément LAFOND
17:20 - 17:45 Prix Favard - Sciences de la Vie : Microscopie par génération de second harmonique (SHG) résolue en polarisation linéaire et circulaire pour caractériser l'organisation 3D du collagène. Margaux SCHMELTZ
17:50 - 17:56 Prix Castaing - Sciences de la Matière. François VURPILLOT (Rouen)
17:57 - 18:03 Prix Castaing - Sciences de la Vie. Graça RAPOSO
18:04 - 18:15 Présentation du Membre d'Honneur. Didier BLAVETTE (Professor) (Saint-Étienne-du-Rouvray), Virginie SERIN (Prof.) (Toulouse Cedex)
Room 1