A comparative experiment on energy consumption in cleanrooms with indoor water spray humidification and steam humidification systems

Won-Il Song^{1,2}, Ki-Cheol Kim¹, Kyung-Hoon Yoo^{1*}, Kyung-Eung Tae³, Yong-Sik Kim⁴ and Oh-Myung Kwon²

¹Nanoscale Contamination Control Lab, Korea Institute of Industrial Technology, Ansan-Si, 15588, South Korea

²Department of Mechanical Engineering, Korea University, Seoul, 02841, South Korea

³Eunsung Chemical Co., Anseong-Si, 17554, South Korea

⁴Samwoo System Co., Gwangmyung-Si, 14308, South Korea

Keywords: cleanroom experiment, indoor water spray humidification, steam humidification, energy consumption.

* Presenting author email: khyoo@kitech.re.kr

For a large-scale high-tech industry plant, cleanrooms need to introduce conditioned air from the outdoor ambient environment. At this time, huge amounts of energy are consumed in an outdoor air conditioning (OAC) system to heat, humidify, cool, dehumidify outdoor air. Meanwhile, an indoor water spray humidification is helpful to replace the high energy consumption nature of steam humidification in the OAC system. Therefore, a comparative experiment on the energy consumption is needed to assess and prove energy reduction in cleanrooms with different humidification systems. In the present study, we conducted the comparative experiment on consumed electricity in cleanrooms with two types of humidification systems. The present twin cleanroom is located in Ansan-si, Kyunggi-do, South Korea and has $2,200 \text{ m}^3/\text{h} \sim 2,300 \text{ m}^3/\text{h}$ outdoor air intake.

Figure 1. Schematic diagram of the present twin cleanroom for a comparative humidification experiment.

Fable 1.	Condition	of twin	cleanroom	experiment
				1

Climatic condition	Ansan, 2015-2016		
Outdoor air flow	2,200 or 2,300 m ³ /h		
Outdoor air	Winter : 5.3 ℃, 65.2% RH		
temperature and	Intermediate : 25.9℃, 25.6%RH		
relative humidity	Summer : 28.6 ℃, 76.1%		
Air state in cleanroom	23°C, 45%RH		
Cleanroom area, height	14.11 m ² , 2 m		
Return shaft area, height	2.52 m ² , 4.2 m		
Nozzle pressure, number	0.2 MPa , 10 ea		

Table 2.	Experimental	results of	cleanroom	energy
	con	sumption.		

Season	Item		Steam (kW)		Indoor water spray (kW)	
Summer	Consumption		15.849		17.173	
Summer	Reduction		0		-1.32	
	FFU		2.469		2.473	
Break- Down	Cooling System	Cooling Tower	11.63	0.3	12.67	0.3
		Chiller		6.93		7.87
		Pump		4.4		4.5
	Air Conditioning	Heater	1.75	0	2.13	0
		Humidifier		0		0
	System	Fan		1.75		2.13
Inter	Consumption		25.816		27.208	
mediate	Reduction		0		-1.392	
	FFU		2.472		2.47	
	Cooling System	Cooling Tower	21.044	0.5	22.338	0.3
Break- Down		Chiller		16.044		17.6 28
		Pump		4.5		4.41
	Air Conditioning	Heater	2.3	0.15	2.4	0.14
		Humidifier		0.41		0.1
	System	Fan		1.74		2.16
Winter	Consumption		24.784		17.472	
w Inter	Reduced		0		7.312	
	FFU		2.471		2.472	
Break- Down	Cooling System	Cooling Tower	9.52	0.35	9.83	0.32
		Chiller		4.9		5.19
		Pump		4.27		4.32
	Air Conditioning System	Heater	12.793	2.253	5.17	2.18
		Humidifier		8.72		0.94
		Fan		1.82		2.05

This work was supported by the MOSF, MOTIE of Korea, KETEP and KITECH.

Kim, H.T., Song, G.S., Kim, K.C., Yoo, K.H., Son S.W., Shin, D.K., Park, D.J., Kwon, O.M. (2011) *Trans. Korean Soc. Mech. Eng. B*, Vol. 35, No. 12, pp. 1249~1255 (in Korean).

- Tsao, J.M., Hu, S.C., Xu, T., Chan, D,Y.L. (2010) *Energy and Buildings*, Vol. 42, pp. 2005-2013.
- Uemura, S., Katsuki, Y., Suzuki, K. (2004) Proc. the 22nd Annual Technical Meeting on Air Cleaning and Contamination Control, Tokyo, pp. 138-140 (in Japanese).