## Comparing night-time with day-time ion cluster events in a boreal forest

S. Buenrostro Mazon, J. Kontkanen, H.E. Manninen, T. Nieminen, V.-M. Kerminen and M. Kulmala

Department of Physics, University of Helsinki, Helsinki, 00014, Finland Keywords: Night-time, new particle formation, sub-3 nm, ions. Presenting author email: stephany.mazon@helsinki.fi

Global observations of new particle formation (NPF) events are centered during daylight hours when photochemical oxidation occurs. Night-time nucleation mode particles (<25 nm) have, nonetheless, been reported in various locations around the world including Hyytiälä, Finland (Junninen *et al.* 2008, Lehtipalo *et al.* 2011). We analyzed 0.9-8 nm ion data from 2003–2013 in SMEAR II station, Hyytiälä, Finland, where we observed sub-3 nm nocturnal events in a third (30-34%) of the days in both positive and negative polarities. From this preselection, we selected the events with elevated 2-3 nm ion concentration (>70 cm<sup>-3</sup>), so as to go beyond the constant ion pool (<2nm) and investigate possible particle formation. The remainder of the study is based on these 2-3 nm cluster events (hereafter, nCE).

Nocturnal CE ion concentrations and maximum ion diameters were compared to daytime ion concentrations during NPF events to identify the limits of nocturnal clusters.

## Daytime vs. nighttime ion concentrations: 0.9-1.5 nm, 1.5-2 nm, 2-3 nm, and 3-7 nm

Median nCE 2-3 nm ion concentrations started from  $\sim 10 \text{ cm}^{-3}$  and increased to  $\sim 100 \text{ cm}^{-3}$  at event peak, with a median concentration of 31 cm<sup>-3</sup> during the 18:00-24:00 hr window (Figure 1). Day-time (08:00-12:00) 2-3 nm ion concentrations during NPF events had a similar median concentration of 39 cm<sup>-3</sup>, while nonevent days and nights had ~3 cm<sup>-3</sup>, respectively. Small ions (0.9-1.5 nm) median concentrations were similar (~500-700 cm<sup>-3</sup>) in day and night events and non-events. Nocturnal CE presented the highest 1.5-2 nm median concentration (235 cm<sup>-3</sup>) compared to NPF days (96 cm<sup>-</sup> <sup>3</sup>) and non-events (day and night:  $\sim 20$  cm<sup>-3</sup>). This indicates a clear nocturnal enhancement of 1.5-2 ions during CE nights, greater than during NPF event days. However, ~3–7 nm ions concentrations were substantially lower during CE (median: <10 cm<sup>-3</sup>) than during NPF events (median: 52 cm<sup>-3</sup>). Interestingly, however, 90% of CE occurred during the night of a NPF event (55%) or undefined day (35%).

This study (Buenrostro Mazon *et al.* 2016) concludes that ions >3 nm in size are not effectively produced in night-time Hyytiälä.



Figure 1. Median 48-h (n = 166 d) number size distribution plot for nocturnal cluster events (CE). CE commonly occur during 18:00-24:00 hr, reaching median ion concentration of 100 cm<sup>-3</sup>. They have a ~55% co-occurrence with NPF days, as can be seen in the figure around noon in day 1 and day 2.

## Acknowledgements

This project was supported by the Horizon 2020 research and innovation programme (No. 654109, ACTRIS-2), and the EU 7th Framework Programme (FP7/2007-2013) (No. 262254, ACTRIS). We also thank the Academy of Finland Center of Excellence program, the Cryosphere-Atmosphere Interactions in a Changing Arctic Climate (CRAICC), and the European Research Council Project (ATMNUCLE).

- Buenrostro Mazon S. Kontkanen J., Manninen H.E., Nieminen T., Kerminen V.-K. and Kulmala M. (2016) *Boreal Env. Res.* **21**, 242–261
- Junninen, H., Hulkkonen M., Riipinen I., Nieminen T., Hirsikko A., Suni T., Boy M., Lee S.-H., Vana M., Tammet H., Kerminen V.-M. and Kulmala M. (2008) *Tellus* **60B**, 365–371
- Lehtipalo, K., Sipilä M., Junninen H., Ehn M., Berndt T., Kajos M. K., Worsnop D. R., Petäjä T. and Kulmala M. (2011) *Aerosol Sci. Technol.* **45**, 499–509