Palladium subnano-clusters on TiO₂ for solar photocatalytic NO removal

K. Fujiwara¹*, U. Müller² and S.E. Pratsinis¹

¹Particle Technology Laboratory, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland

²Laboratory for Nanoscale Materials Science, Empa, Überlandstrasse 129, 8600 Dübendorf, Switzerland

Keywords: Flame spray pyrolysis, Pd subnano-cluster, TiO₂ photocatalyst, NO_x removal.

Presenting author email: fujiwara@ptl.mavt.ethz.ch

Nitrogen oxides, NO_x (NO and NO_2), are major pollutants generated by combustion. Removal of such NO_x by solar photocatalysts that requires only sunlight is quite attractive. Titanium oxide is the most widely used photocatalyst. Under light excitation, TiO₂ converts NO_x into nitrate ions (NO_3) but some NO is converted also into unfavorable NO_2 .¹ So high conversion and selectivity for nitrate formation are essential. Subnanometer sized metal clusters on metal oxide supports induce high conversion and high selectivity minimizing the use of expensive noble metals on such catalysts.²

Here, Pd subnano-clusters on TiO₂ were prepared in one step by flame spray pyrolysis (FSP) which can be scaled up readily to yield production rates of several kg/h. The photocatalytic NO (1 ppm) removal efficiency of those Pd/TiO₂ under solar light (100 mW/cm²) was evaluated based on ISO 22197-1:2007. The average NO_x removal (η_{NOx}) and nitrate formation (η_{NO3} -) for 5 h is defined by³:

$$\eta_{NOx} = \int_{0}^{5h} \frac{c_{NOin} - c_{NOout} + c_{NO2out}}{c_{NOin}} dt$$

$$\eta_{NO3-} = \frac{m_{NO3-}[mol]}{3[L/min]/22.4[L/mol]} \int_{0}^{300 \text{ min}} c_{NO}[mol] dt$$

Table 1 Specific surface area (SSA) of commercial TiO_2 (c-TiO₂), FSP-made (f-TiO₂ and f-Pd/TiO₂) and wet-photodeposited Pd (w-Pd/c-TiO₂ and w-Pd/f-TiO₂) on TiO₂ and their average efficiencies of NO_x removal and NO₃⁻ formation in 5 h under solar-light.

2		U	
Powders	SSA m ² /g	$\eta_{\text{NO}x}$, %	$\eta_{ m NO3-},$ %
c-TiO ₂	51.1	4.6	5.1
f-TiO ₂	144.1	12.9	11.9
w-Pd/c-TiO ₂	49.5	9.6	10.9
w-Pd/f-TiO ₂	131.4	11.9	12.2
f-Pd/TiO ₂	138.7	31.8	30.5
f-Pd/TiO ₂ /air	89.6	34.9	29.7
f-Pd/TiO ₂ /N ₂	135.1	25.3	21.4

As shown in Table 1, the η_{NOx} of all the catalysts is comparable with the η_{NO3} indicating that most of converted NO becomes NO₂ and nitrate, which is consistent with photocatalytic NO removal by pure TiO₂.¹ The η_{NOx} of f-Pd/TiO₂ is 3 and 7 times higher than that of c-TiO₂ with and without photodeposited Pd on it. This activity of f-Pd/TiO₂ is higher than that of plasmatreated⁴ TiO₂ was only about 2 times higher than that of commercial pure TiO₂ (ST-01). Furthermore, the η_{NOx} of f-TiO₂ is higher than that of c-TiO₂, probably due to the higher SSA but it is not improved by photodeposited Pd. Interestingly, annealing f-Pd/TiO₂ in air at 600 °C (f-Pd/TiO₂/air) slightly improves the η_{NOx} but annealing in N₂ at 400 °C (f-Pd/TiO₂/N₂) degrades the η_{NOx} .

Figure 1 STEM images of (a) w-Pd/f-TiO₂, f-Pd/TiO₂, (b) as-prepared and annealed for 2 h in (c) air at 600 $^{\circ}$ C and (d) N₂ at 400 $^{\circ}$ C.

Figure 1 shows the size of photodeposited Pd (squares) on f-TiO₂ (a) to be 1-5 nm. In f-Pd/TiO₂ (b), however, there are no distinguishable Pd particles (> 1 nm) and extremely small size (~ 0.5 nm) of Pd clusters can be only observed (circles). Such Pd subnano-clusters are interacting strongly with oxygen defects on the TiO₂ surface creating an intermediate oxidation state of Pd as proven by XPS.³ Most interestingly, after annealing in air at 600 °C for 2 hours (c), the Pd size in the f-Pd/TiO₂ powder is still in the subnano range. On the other hand, annealing that powder under N₂ at 400 °C for 2 hours (d) converts most of the as-prepared Pd subnano-clusters on TiO₂ into Pd nanoparticles (1-5 nm). Therefore, Pd subnano-clusters are critical for the remarkable photocatalytic NO_x removal under solar light.

- 1. Ibusuki, T.; Takeuchi, K., J. Mol. Catal. **1994**, 88, 93-102.
- 2. Flytzani-Stephanopoulos, M.; Gates, B. C., Atomically dispersed supported metal catalysts. *Annu. Rev. Chem. Biomol. Eng.* **2012**, *3*, 545-574.
- Fujiwara, K.; Müller, U.; Pratsinis, S. E., ACS Catalysis 2016, 1887-1893.
- Nakamura, I.; Negishi, N.; Kutsuna, S.; Ihara, T.; Sugihara, S.; Takeuchi, K., *J. Mol. Catal. A: Chem.* 2000, 161, 205-212.